A layout-dependent circuit-design model from Toshiba helps boost gate density and improve cost-performance in next-generation 45-nm CMOS technology. More specifically, 45-nm CMOS gate density can be 2 ...
CMOS devices have large input impedance with input currents on the order of 0.01nA. Adding feedback circuitry can result in a latch-like device that can be used to store bits, and also operate in a ...
Using CMOS Gates to create crystal oscillators is cost-effective and gives the designer more control over the parameters. To view the application note, click on the URL below. Circuit selected for www ...
Any typical digital design style with CMOS uses complementary pairs of p-type and n-type MOSFETs for logic functions implementation. Naturally, CMOS always ought to provide INVERTED outputs like ...
Using just two NAND or inverter gates its possible to build a D type (or ‘toggle’) flip-flop with a push-button input. At power-up the output of gate N2 is at a logical ‘1’, ensuring that transistor T2 ...
Density and speed of IC’s have increased exponentially for several decades, following a trend described by Moore’s Law. While it is accepted that this exponential improvement trend will end, it is ...
Since CMOS has been around for about 50 years, a comprehensive history would be a book. This blog focuses on what I consider the major transitions. Before CMOS, there was NMOS (also PMOS, but I have ...